Asymptotic estimates for one class of homeomorphisms

Bogdan Klishchuk

Institute of Mathematics of National Academy of Sciences of Ukraine kban1988@gmail.com

Ruslan Salimov

Institute of Mathematics of National Academy of Sciences of Ukraine ruslan.salimov1@gmail.com

Let Γ be a family of curves γ in \mathbb{R}^n , $n \ge 2$. A Borel measurable function $\rho : \mathbb{R}^n \to [0, \infty]$ is called *admissible* for Γ , (abbr. $\rho \in \operatorname{adm} \Gamma$), if

$$\int_{\gamma} \rho(x) \, ds \ge 1$$

for any curve $\gamma \in \Gamma$. Let $p \in (1, \infty)$.

The quantity

$$M_p(\Gamma) = \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbb{R}^n} \rho^p(x) \, dm(x)$$

is called *p*-modulus of the family Γ .

For arbitrary sets E, F and G of \mathbb{R}^n we denote by $\Delta(E, F, G)$ a set of all continuous curves $\gamma : [a, b] \to \mathbb{R}^n$ that connect E and F in G, i.å., such that $\gamma(a) \in E$, $\gamma(b) \in F$ and $\gamma(t) \in G$ for a < t < b.

Let D be a domain in \mathbb{R}^n , $n \ge 2$, $x_0 \in D$ and $d_0 = \operatorname{dist}(x_0, \partial D)$. Set

$$\mathbb{A}(x_0, r_1, r_2) = \{ x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2 \},\$$

$$S_i = S(x_0, r_i) = \{x \in \mathbb{R}^n : |x - x_0| = r_i\}, \quad i = 1, 2.$$

Let a function $Q: D \to [0, \infty]$ be Lebesgue measurable. We say that a homeomorphism $f: D \to \mathbb{R}^n$ is ring Q-homeomorphism with respect to p-modulus at $x_0 \in D$ if the relation

$$M_p(\Delta(fS_1, fS_2, fD)) \leqslant \int_{\mathbb{A}} Q(x) \eta^p(|x - x_0|) dm(x)$$

holds for any ring $\mathbb{A} = \mathbb{A}(x_0, r_1, r_2), 0 < r_1 < r_2 < d_0, d_0 = \operatorname{dist}(x_0, \partial D)$ and for any measurable function $\eta : (r_1, r_2) \to [0, \infty]$ such that

$$\int_{r_1}^{r_2} \eta(r) \, dr = 1 \, .$$

Let

$$L(x_0, f, R) = \sup_{|x-x_0| \le R} |f(x) - f(x_0)|.$$

Theorem. Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is a ring Q-homeomorphism with respect to p-modulus at a point x_0 with p > n where x_0 is some point in \mathbb{R}^n and for some numbers c > 0, $\kappa \leq p$, $r_0 > 0$ the condition

$$\int_{\mathbb{A}(x_0,r_0,R)} Q(x) \psi^p(|x-x_0|) dm(x) \leqslant c I^{\kappa}(r_0,R) \quad \forall R > r_0,$$

holds, where $\psi(t)$ is a nonnegative measurable function on $(0, +\infty)$ such that

$$0 < I(r_0, R) = \int_{r_0}^R \psi(t) dt < \infty \quad \forall R > r_0 \,,$$

then

$$\underline{\lim}_{R \to \infty} L(x_0, f, R) I^{\frac{\kappa - p}{p - n}}(r_0, R) \ge \omega_{n-1}^{\frac{1}{n-p}} \left(\frac{p - n}{p - 1}\right)^{\frac{p-1}{p-n}} c^{\frac{1}{n-p}},$$

where ω_{n-1} is an area of the unit sphere $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}$ in \mathbb{R}^n .