Perfect 2-colourings of Cayley graphs

Sanming Zhou The University of Melbourne sanming@unimelb.edu.au

Let $\Gamma = (V, E)$ be a graph. A partition $\pi = \{V_1, \ldots, V_m\}$ of V is called an equitable partition or a perfect *m*-colouring of Γ if there exists an $m \times m$ matrix (b_{ij}) , called the quotient matrix of π , such that every vertex in V_i has exactly b_{ij} neighbours in V_j . In particular, if $\{C, V \setminus C\}$ is a perfect 2-colouring of a *d*-regular graph Γ with quotient matrix $\begin{pmatrix} 0 & d \\ 1 & d-1 \end{pmatrix}$, then C is called a perfect 1-code in Γ . In general, for an integer $t \geq 1$, a perfect *t*-code in Γ is a subset C of V such that every vertex of Γ is at distance no more than t to exactly one vertex in C. Perfect *t*-codes in Hamming graph H(n,q) and in the Cartesian product of n copies of cycle C_q are precisely q-ary perfect *t*-codes of length n under the Hamming and Lee metrics, respectively. Thus perfect codes in Cayley graphs are a generalization of perfect codes in classical coding theory.

I will talk about some recent and not-so-recent results on perfect 2colourings of Cayley graphs with an emphasis on perfect 1-codes in Cayley graphs.