Strictly additive 2-designs

Anamari Nakić
University of Zagreb
anamari.nakic@fer.hr
Marco Buratti
University of Perugia
buratti@dmi.unipg.it

This work draws inspiration from an interesting theory developed in [1]. A design (V, \mathcal{B}) is said to be additive if V is a subset of an abelian group G and the elements of any block $B \in \mathcal{B}$ sum up to zero. We propose to speak of a strictly additive design when V coincides with G.

Up to last year, apart from the obvious examples of the $2-\left(q^{n}, q, 1\right)$ designs associated with the affine geometry $\operatorname{AG}(n, q)$, all known strictly additive 2-designs had a quite "big" λ. Very recently, a strictly additive $2-(81,6,2)$ design has been found in [3]. This design, besides being simple (the only design with these parameters previously known [2] has sixteen pairs of repeated blocks), has the property that every block is union of two parallel lines of AG(4, 3).

In the attempt of getting other strictly additive designs with this property we found some infinite series of 2 -designs whose parameter-sets are probably new.

In this talk, besides presenting the above series, I will try to outline a proof that for every odd k, there are infinitely many values of v for which a strictly additive $2-(v, k, 1)$ design exists.
[1] A. Caggegi, G. Falcone, M. Pavone, On the additivity of block designs, J. Algebr. Comb. 45, 271-294 (2017).
[2] H. Hanani, Balanced incomplete block designs and related designs, Discrete Math. 11 (1975), 255-369.
[3] A. Nakic, The first example of a simple $2-(81,6,2)$ design, Examples and Counterexamples 1 (2021).

