Slice-by-slice and global smoothness of slice regular functions

Riccardo Ghiloni

University of Trento riccardo.ghiloni@unitn.it

The concept of slice regular function over the real algebra \mathbb{H} of quaternions is a generalization of the notion of holomorphic function of a complex variable. Let Ω be an open subset of \mathbb{H} , which intersects \mathbb{R} and is invariant under rotations of \mathbb{H} around \mathbb{R} . A function $f: \Omega \to \mathbb{H}$ is slice regular if it is of class \mathcal{C}^1 and, for all complex planes \mathbb{C}_I spanned by 1 and a quaternionic imaginary unit I (\mathbb{C}_I is a 'complex slice' of \mathbb{H}), the restriction f_I of f to $\Omega_I = \Omega \cap \mathbb{C}_I$ satisfies the Cauchy-Riemann equations associated to I, i.e., $\overline{\partial}_I f_I = 0$ on Ω_I , where $\overline{\partial}_I = \frac{1}{2} \left(\frac{\partial}{\partial \alpha} + I \frac{\partial}{\partial \beta} \right)$. We study the continuity and the differential regularity of slice regular

We study the continuity and the differential regularity of slice regular functions viewed as solutions of the slice-by-slice differential equations $\overline{\partial}_I f_I =$ 0 on Ω_I and as solutions of their global version $\overline{\partial} f = 0$ on $\Omega \setminus \mathbb{R}$.

Our results extend to the slice polyanalytic and monogenic cases.