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Summary
We use to work with models defined through a function and some equations
connecting the input variables such as a given function subject to some con-
straints involving input variables. For such models, it is interesting to better
determine the partial derivatives with respect to each input variable that
comply with the constrained equations. As the equations connecting the in-
put variables introduce some dependency structures among input variables,
and the theory of probability allows for better characterizing the dependen-
cies among variables, In this abstract, we propose new partial derivatives
for functions with non-independent variables by making use of the formal
definition of independence or dependence such as the cumulative distribu-
tion function (CDF). The proposed new partial derivatives are based on the
classical gradient and the CDF. Such derivatives are uniquely defined and do
not require any additional assumption. Our approach can be extended for
determining cross-partial derivatives as well.

Main results

In this section, we include the distribution of inputs to derive the partial
derivatives. It is to be noted that each initial input Xj lies in a given domain
Ωj ⊆ R with j = 1, . . . , d, and we assume that we are able to attribute to Xj

a distribution. It is common to attribute a normal distribution with a higher
variance when we do have much information about the variable, which comes
down to make use of uniform distribution for a bounded domain Ωj.

Therefore, the input variables X = (X1, . . . , Xd) have a given distribution
F , and we are interested in a function given by f(X) and h (X) = 0. In what
follows, we assume that F =

∏d
j=1 Fj with Fj the CDF of Xj, which means

that the initial input variables are independent. The equation h (X) = 0
introduces some dependencies, and this yields to new dependent variables
Xc ∼ F c. It is worth noting that the inputs Xc must satisfies h(Xc) = 0 and
we have

Y =

{
f(X)
s.t. h(X) = 0

d
= f(Xc) ,
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provided that F c is known.

Formally, Xc d
= {X ∼ F : h(X) = 0}, and we are able to find the distri-

bution of Xc. Indeed, some analytic derivation of F c can be found in [1].
For complex function h, a copula-based approach is suitable to fit a distri-
bution to simulated data. Based on F c or the estimated distribution F̂ c, the
multivariate conditional quantile transform (see [2,3,4]) implies a regression
representation of Xc (see [5,6]), which also implies a dependency function of
Xc given by ([1,7])

Xc
∼j = rj

(
Xc

j ,U
)
,

where Xj is independent of U; fj : Rd → Rd−1 and
(
Xc

j ,X
c
∼j
) d

=
(
Xc

j , rj
(
Xc

j ,U
))
∼

F c.

Now we have all the elements in hand to provide the partial derivatives
(see Theorem 1). To that end, we use

∇jf :=
[
f ′xj

, f ′xw1
, . . . , f ′xwd−1

]T
; J c

j :=

[
1,

∂rw1,j

∂xj

, . . . ,
∂rwd−1,j

∂xj

]T
,

for the gradient and the partial derivatives of each component of rj w.r.t. xj,

respectively. Moreover, we use J c
j (`) the `th component of J c

j and

J c
wk

:=

[
1

J c
j (k + 1)

,
J c
j (2)

J c
j (k + 1)

, . . . ,
J c
j (d)

J c
j (k + 1)

]T
; ∀ k ∈ {1, . . . d− 1} .

Theorem 1. If the functions f and rj are differentiable w.r.t. their inputs,
then we have

∂f

∂xj

(x) = ∇jf(x)TJ c
j (xj,u) or

∂f

∂xj

(x) = ∇jf(x)TJ c
j

(
xj, r

−1
j (x∼j)

)
;

(1)
∂f

∂xwk

(x) = ∇jf(x)TJ c
wk

(
xj, r

−1
j (x∼j)

)
∀ k ∈ {1, . . . d− 1} . (2)
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