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In this work, we are interested in studying the behavior of an incom-
pressible viscous fluid moving between two closely spaced surfaces, also in
motion.

We consider a three-dimensional thin domain, Ωε
t , filled by a fluid, that

varies with time t ∈ [0, T ], given by

Ωε
t =

{
(xε1, x

ε
2, x

ε
3) ∈ R3 :

xi(ξ1, ξ2, t) ≤ xεi ≤ xi(ξ1, ξ2, t) + hε(ξ1, ξ2, t)Ni(ξ1, ξ2, t),

(i = 1, 2, 3), (ξ1, ξ2) ∈ D ⊂ R2
}

(1)

where ~X(ξ1, ξ2, t) is the lower bound surface parametrization, ~N(ξ1, ξ2, t) is
the unit normal vector and hε(ξ1, ξ2, t) is the gap between the two surfaces
in motion assumed to be small with regard to the dimension of the bound
surfaces. We take into account that the fluid film between the surfaces is
thin by introducing a small non-dimensional parameter ε, and setting that

hε(ξ1, ξ2, t) = εh(ξ1, ξ2, t) (2)

We assume that the fluid motion is governed by Navier-Stokes equations
and using the asymptotic development technique, the following lubrication
model in a thin domain with curved mean surface has been obtained:

1√
A0

div

(
(hε)3√
A0

M∇p−2,ε

)
= 12µ

∂hε

∂t
+ 12µ

hεA1

A0

(
∂ ~X

∂t
· ~N

)
− 6µ∇hε · ( ~W 0 − ~V 0) +

6µhε√
A0

div(
√
A0( ~W 0 + ~V 0)) (3)

It is a new generalized Reynolds equation where the pressure, pε, is ap-
proximated by p−2,ε = ε−2p−2. The fluid velocities inside the domain are
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subsequently approximated from the pressure using the equations

u01 =
h2(ξ23 − ξ3)

2µA0

(
G
∂p−2

∂ξ1
− F ∂p

−2

∂ξ2

)
+ ξ3(W

0
1 − V 0

1 ) + V 0
1 (4)

u02 =
h2(ξ23 − ξ3)

2µA0

(
E
∂p−2

∂ξ2
− F ∂p

−2

∂ξ1

)
+ ξ3(W

0
2 − V 0

2 ) + V 0
2 (5)

u03 =
∂ ~X

∂t
· ~N (6)

where the velocity on the lower surface, ~V 0, and on the upper surface, ~W 0,
are known. We denote by

A0 = EG− F 2 (7)

A1 = −eG− gE + 2fF (8)

M =

(
G −F
−F E

)
(9)

where E, F , G and e, f , g are the coefficients of the first and the second
(respectively) fundamental forms of the surface parametrized by ~X.

We have observed that, depending on the boundary conditions, other
models can be obtained. We derive a shallow water model changing the
boundary conditions that we had imposed: instead of assuming that we
know the velocities on the upper and lower boundaries of the domain, we
assume that we know the tractions on these upper and lower boundaries.
We yield:

∂V 0
i

∂t
+

2∑
l=1

(
V 0
l − C0

l

) ∂V 0
i

∂ξl
+

2∑
k=1

(
R0

ik +
2∑

l=1

H0
ilkV

0
l

)
V 0
k

= − 1

ρ0

(
α0
i

∂π0
0

∂ξ1
+ β0

i

∂π0
0

∂ξ2

)
+ ν

{
2∑

m=1

2∑
l=1

∂2V 0
i

∂ξm∂ξl
J0
lm +

2∑
k=1

2∑
l=1

∂V 0
k

∂ξl
(L0

kli + ψ(h)0ikl)

+
2∑

k=1

V 0
k (S0

ik + χ(h)0ik) + κ̂(h)0i

}
+ F 0

i (h)−Q0
i3

(
∂ ~X

∂t
· ~N

)
(i = 1, 2)(10)

∂h

∂t
+

h√
A0

div
(√

A0~V 0
)

+
hA1

A0

(
∂ ~X

∂t
· ~N

)
= 0 (11)

where α0
i , β

0
i , C0

l , H0
ilk, J0

lm, L0
kli, Q

0
i3, R

0
ik, S0

ik depend only on the parametriza-

tion ~X and F 0
i (h), ψ(h)0ikl, χ(h)0ik, κ(h)0i depend on the parametrization ~X
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and on the gap h. The exact definition of these coefficients can be found in
[5], where the complete derivation of both models is presented.

Once V 0
1 , V 0

2 and π0
0 (the approximation of the pressure on the lower

bound) are calculated we have the following approximation of the velocities
and the pressure

u0i = W 0
i = V 0

i i = 1, 2 (12)

u03 =
∂ ~X

∂t
· ~N (13)

p0 =
2µ

h

∂h

∂t
+ π0

0 (14)

These models can not be found in the literature, as far as we know. We
reach the conclusion that the magnitude of the pressure differences at the
lateral boundary of the domain is key when deciding which of the two models
best describes the fluid behavior.

Boundary conditions tell us which of the two models should be used when
simulating the flow of a thin fluid layer between two surfaces: if the fluid
pressure is dominant (that is, it is of order O(ε−2)), and the fluid velocity is
known on the upper and lower surfaces, we must use the lubrication model;
if the fluid pressure is not dominant (that is, it is of order O(1)), and the
tractions are known on the upper and lower surfaces, we must use the shallow
water model. In the first case we will say that the fluid is “driven by the
pressure” and in the second that it is “driven by the velocity”.
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