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The Morse-Smale flows have been classified in sense of topological equiva-
lence for several times during the last century. The most known invariants for
such flows are invariants by E. Leontovich and A. Mayer [1], [2], M. Peixoto
[3], A. Oshemkov and V. Sharko [4]. Besides, the Ω-stable flows on surfaces
have been classified in such sense too by D. Neumann and T. O’Brien [5] and
V. Kruglov, D.Malyshev and O. Pochinka [6]. Attempts were also made to
classify Morse-Smale flows in sense of topological conjugacy: in particular, V.
Kruglov [7] proved that the classes of topological equivalence and topological
conjugacy for gradient-like flows on surfaces coincide.

J. Palis [8] considered a flow in a neighbourhood of a separatrix which
connects two saddle points. He showed that in each topological equivalence
class there is continuum of topological conjugacy classes, that is a flow with
a separatrix-connection has analitical conjugacy invariants called moduli of
stability or moduli of topological conjugacy. Each limit cycle likewise gener-
ates at least one modulus associated with its period. V. Kruglov, O. Pochinka
and G. Talanova [9] proved that non-singular flows on an annulus with only
two limit cycles on the annulus’s boundary components have infinite number
of moduli, expressed by a function.

The first result of this report is the following.

Theorem. A Morse-Smale surface flow has finite number of moduli iff it
has no a trajectory going from one limit cycle to another.

To construct the topological classification in sense of conjugacy we use
the complete topological classifications in sense of equivalence from [4], [6].
Namely, there is one-to-one correspondence between equivalent classes of a
Morse-Smale flow φt on a surface and isomorphic classes of the equipped graph
Υ∗φt , which contains an information about partition the ambient manifold into
cells with similar trajectories behaviour and the limit cycles types.
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To distinguish topological conjugacy classes we add to the equipped graph
an information on the periods of the limit cycles. It gives a new equipped
graph Υ∗∗φt , and here is the second result.

Theorem. Morse-Smale surface flows φt, φ′t without trajectories going from
one limit cycle to another one are topologically conjugate iff their equipped
graphs Υ∗∗φt and Υ∗∗φ′t are isomorphic.
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