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Closures of solvable permutation groups
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Let m be a positive integer and let © be a finite set. The m-closure G
of G < Sym(Q) is the largest permutation group on €2 having the same orbits
as G in its induced action on the Cartesian product Q™. Wielandt [5] showed
that

GV >G® >...>qm =gmth = ... = q, (1)

for some m < |Q]. (Since the stabilizer in G of all but one point is always
trivial, G™~Y = G where n = |Q|.) In this sense, the m-closure can be
considered as a natural approximation of G. It was shown by Praeger and
Saxl [2] that for m > 6, the m-closure G(™ of a primitive permutation
group G has the same socle as G. Furthermore, they classified explicitly
primitive groups G and H with different socles having the same m-orbits for
m < 5. Unfortunately, their results say very little about closures of solvable
permutation groups. The main goal of this talk is to present the results of
[1], where we study such closures.

The 1-closure of G is the direct product of symmetric groups Sym(A),
where A runs over the orbits of G. Thus the 1-closure of a solvable group
is solvable if and only if each of its orbits has cardinality at most 4. The
case of 2-closure is more interesting. The 2-closure of every (solvable) 2-
transitive group G < Sym(Q) is Sym(Q2); other examples of solvable G and
nonsolvable G? appear in [4]. But, as shown by Wielandt [5], each of the
classes of finite p-groups and groups of odd order is closed with respect to
taking the 2-closure. Currently, no characterization of solvable groups having
solvable 2-closure is known.
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Seress [3] observed that if G is a primitive solvable group, then G® = G;
so the b5-closure of a primitive solvable group is solvable. Our main result is
the following stronger statement.

Theorem 1. The 3-closure of a solvable permutation group is solvable.

The corollary below is an immediate consequence of Theorem 1 and the
chain of inclusions (1).

Corollary 2. For every integer m > 3, the m-closure of a solvable permu-
tation group is solvable.
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