Connected (n_k) configurations exist for almost all n

Leah Berman University of Alaska Fairbanks lwberman@alaska.edu

Gábor Gévay

University of Szeged

gevay@math.u-szeged.hu

Tomaž Pisanski University of Ljubljana and University of Primorska pisanski@upr.si

A geometric (n_k) configuration is a collection of points and straight lines, typically in the Euclidean plane, so that each line passes through k of the points and each of the points lies on k of the lines. In a series of papers, Branko Grünbaum showed that geometric (n_4) configurations exist for all $n \ge 24$, using a series of geometric constructions later called the "Grünbaum Calculus". In this talk, we will show that for each k > 4, there exists an integer N_k so that for all $n \ge N_k$, there exists at least one (n_k) configuration, by generalizing the Grünbaum Calculus operations to produce more highly incident configurations. This is joint work with Gábor Gévay and Tomaž Pisanski.