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It is considered the boundary value problem (BVP) for the Fredholm IDE

dx

dt
= f(t, x) +

m∑
k=1

ϕk(t)

∫ T

0

ψk(τ)x(τ)dτ, t ∈ (0, T ), x ∈ Rn, (1)

g [x(0), x(T )] = 0, (2)

where f : [0, T ]×Rn → Rn and g : Rn ×Rn → Rn are continuous; the n× n
matrices ϕk(t), ψk(τ), k = 1,m, are continuous on [0, T ], ‖x‖ = max

i=1,n
|xi|.

Denote by C
(
[0, T ],Rn

)
the space of continuous functions x : [0, T ]→ Rn

with the norm ‖x‖1 = max
t∈[0,T ]

‖x(t)‖. By a solution to problem (1), (2) we

mean a continuously differentiable on (0, T ) function x(t) ∈ C
(
[0, T ],Rn

)
that satisfies equation (1) and boundary condition (2).

Employing regular partition ∆N (see [4, 5]) of the interval [0,T] the ∆N

general solution x(∆N , t, λ) to the linear nonhomogenous Fredholm IDE was
introduced in cite1. In [7] the new concept of a general solution to the Fred-
holm IDE (1) was extended. By substituting the corresponding expressions
of x(∆N , t, λ) into the boundary condition and continuity conditions of a so-
lution to equation (1) at the interior points of ∆N we construct a system of
nonlinear algebraic equations in parameters. It is proved that the solvability
of the BVP is equivalent to the solvability of this system.

In present communication, an algorithm for finding a numerical solution
to BVP (1), (2) is proposed. To this end, we use the Dzhumabaev pa-
rameterization method [3] and results of [6, 4, 5, 1, 2, 7]. At applying the
parameterization method to BVP, the special Cauchy problem for a system
of nonlinear Fredholm IDEs with parameters and a system of nonlinear al-
gebraic equations in parameters are the intermediate problems. In this case,
iterative methods are used both for solving the special Cauchy problem and
for solving the systems of nonlinear algebraic equations. The algorithm for
solving the special Cauchy problem includes two auxiliary problems: the
Cauchy problems for ordinary differential equations and the evaluation of
definite integrals. The accuracy of the method that we propose to solve the
BVP (1), (2) depends on the accuracy of methods applied to the auxiliary
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problems and does not depend on a number of the partition subintervals.
To solve the Cauchy problems we use the fourth order Runge-Kutta method
and to evaluate definite integrals we use Simpson’s formula. Therefor, the
accuracy of the numerical solution is definite trough the accuracy of these
problems.
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