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When I was a student of mathematics I was told that someone had for-
malized an entire book on analysis just to put to rest the question whether
mathematics could be completely formalized, so that mathematicians could
proceed with business as usual. I subsequently learned that the book was
Landau’s “Grundlagen” [6], the someone was L. S. van Benthem Jutting [11],
the tool of choice was Automath [12], and that popular accounts of history
are rarely correct.

Formalized mathematics did not die out. Computer scientists spent many
years developing proof assistants [1, 10, 8, 3] – programs that help create and
verify formal proofs and constructions – until they became good enough to
attract the attention of mathematicians who felt that formalization had a
place in mathematical practice. The initial successes came slowly and took
a great deal of effort. In the last decade, the complete formalizations of the
odd-order theorem [4] and the solution of Kepler’s conjecture [5] sparked an
interest and provided further evidence of viability of formalized mathematics.
The essential role of proof assistants in the development of homotopy type
theory [9] and univalent mathematics [13] showed that formalization can
be an inspiration rather than an afterthought to traditional mathematics.
Today the community gathered around Lean [3], the newcomer among proof
assistants, has tens of thousands of members and is growing very rapidly
thanks to the miracle of social networking. The new generation is ushering
in a new era of mathematics.

Formalized mathematics, in tandem with other forms of computerized
mathematics [2], provides better management of mathematical knowledge,
an opportunity to carry out ever more complex and larger projects, and hith-
erto unseen levels of precision. However, its transformative power runs still
deeper. The practice of formalization teaches us that formal constructions
and proofs are much more than pointless transliteration of mathematical
ideas into dry symbolic form. Formal proofs have rich structure, worthy of
attention by a mathematician as well as a logician; contrary to popular belief,
they can directly and elegantly express mathematical insights and ideas; and
by striving to make them slicker and more elegant, new mathematics can be
discovered.

Formalized mathematics is changing the role of foundations of mathemat-
ics, too. A good century ago, a philosophical crisis necessitated the devel-
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opment of logic and set theory, which served as the bedrock upon which the
20th century mathematics was built safely. However, most proof assistants
shun logic and set theory in favor of type theory, the original resolution of the
crisis given by Bertrand Russell [14] and reformulated into its modern form
by Per Martin-Löf [7]. The reasons for this phenomenon are yet to be fully
understood, but we can speculate that type theory captures mathematical
practice more faithfully because it directly expresses the structure and con-
structions of mathematical objects, whereas set theory provides plentiful raw
material with little guidance on how mathematical objects are to be molded
out if it.
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