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A system of linear difference equations with periodic coefficients is con-
sidered
Yn+1 = (A<n) + B(n>>yn7 n e Z7 (1)

where A(n) are non-degenerate matrices of size m x m and the matrix se-
quence {A(n)} is N-periodic, i.e. A(n+ N) = A(n), n € Z. The sequence
{B(n)} is an N-periodic sequence of perturbations. We assume that the
system

Tpi1 = A(n)z,, nE€Z, (2)

is exponentially dichotomous. As shown in[ 1], this is equivalent to the fact
that there are Hermitian matrices H(0), H(1),..., H(N —1) and a matrix P
satisfying the following boundary value problem

4 71
H(l) — A*(DVH( +1)A(l) = (U,*) PUFUPU
-1
—(Uf) (I - PYUU( — P)UTY, 1=0,1,...,N -1,

H0)=PHO)P+ (I —P)H(0)(I - P),

(| P2=P, PUy=UyP,

where U, is the Cauchy matrix of (2). This criterion is analogous to the
criterion of M. G. Krein for the exponential dichotomy of difference equations
with constant coefficients [2].

Using the fact that the solution of the boundary value problem (3) is
represented as

H(l) = (Ul*)_1 ( > (U;)%*(iil—lww)PUﬁ) U

k=0

k=1

(7)) ( > () a-rr (TS v - P)Uf@) Ut = H() + HH(),
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we can obtain conditions for perturbations {B(n)} under which the system
(1) is also exponentially dichotomous.

Theorem. Let det(A(n)) # 0 and the matriz sequence of perturbations
{B(n)} satisfy the condition

max{[|BO)[,.... [BIN = 1I[}
< (h(y/l—hi_Jrl)\/h\|H(O)H+h+<\/1+hi++1) hﬂ\H(O)H) ,
where
h™ = max{|[H=(O)[|, [~ (D], [H"(N = D]},
" = max{[|[HT(O)[, [HT (D], .., [HT(N = D]},

then the perturbed system (1) is exponentially dichotomous .

This paper is a continuation of [1, 3-5].
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