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A system of linear difference equations with periodic coefficients is con-
sidered

yn+1 = (A(n) + B(n))yn, n ∈ Z, (1)

where A(n) are non-degenerate matrices of size m × m and the matrix se-
quence {A(n)} is N -periodic, i.e. A(n + N) = A(n), n ∈ Z. The sequence
{B(n)} is an N -periodic sequence of perturbations. We assume that the
system

xn+1 = A(n)xn, n ∈ Z, (2)

is exponentially dichotomous. As shown in[ 1], this is equivalent to the fact
that there are Hermitian matrices H(0), H(1), . . . , H(N −1) and a matrix P
satisfying the following boundary value problem

H(l)− A∗(l)H(l + 1)A(l) =
(
U∗l

)−1
P ∗U∗l UlPU−1l

−
(
U∗l

)−1
(I − P )∗U∗l Ul(I − P )U−1l , l = 0, 1, . . . , N − 1,

H(0) = H(N) > 0,

H(0) = P ∗H(0)P + (I − P )∗H(0)(I − P ),

P 2 = P, PUN = UNP,

(3)

where Ul is the Cauchy matrix of (2). This criterion is analogous to the
criterion of M. G. Krein for the exponential dichotomy of difference equations
with constant coefficients [2].

Using the fact that the solution of the boundary value problem (3) is
represented as

H(l) =
(
U∗l

)−1( ∞∑
k=0

(
U∗N

)k
P ∗
(N+l−1∑

i=l

U∗i Ui

)
PUk

N

)
U−1l

+
(
U∗l

)−1( ∞∑
k=1

(
U∗N

)k
(I − P )∗

(N+l−1∑
i=l

U∗i Ui

)
(I − P )Uk

N

)
U−1l = H−(l) + H+(l),
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we can obtain conditions for perturbations {B(n)} under which the system
(1) is also exponentially dichotomous.

Theorem. Let det(A(n)) 6= 0 and the matrix sequence of perturbations
{B(n)} satisfy the condition

max{‖B(0)‖, . . . , ‖B(N − 1)‖}

<

(
h−
(√

1− 1

h−
+ 1
)√

h−‖H(0)‖+ h+
(√

1 +
1

h+
+ 1
)√

h+‖H(0)‖

)−1
,

where
h− = max{‖H−(0)‖, ‖H−(1)‖, . . . , ‖H−(N − 1)‖},

h+ = max{‖H+(0)‖, ‖H+(1)‖, . . . , ‖H+(N − 1)‖},

then the perturbed system (1) is exponentially dichotomous .
This paper is a continuation of [1, 3–5].
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