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A triangulation (resp., a quadrangulation) of a surface S is an embedded
graph (possibly with multiple edges and loops) on S with each face bounded
by a closed walk of length 3 (resp., 4). This talk focuses on the relationship
between triangulations and quadrangulations of a surface.

(a) Extension of a graph G is the construction of a new graph by adding
edges to some pairs of vertices in G. Obviously, every quadrangulation G
of any surface can be extended to a triangulation by adding a diagonal to
each face of G. If we require some properties for the resulting triangula-
tion, the problem might be difficult and interesting. We prove that every
quadrangulation of any surface can be extended to an Eulerian triangula-
tion. Furthermore, we give the explicit formula for the number of distinct
Eulerian triangulations extended from a given quadrangulation of a surface.
These completely solves the problem raised by Zhang and He [5].

(b) It is easy to see that every loopless triangulation G of any surface
has a quadrangulation as a spanning subgraph of G. As well as (a), if we
require some properties for the resulting quadrangulation, the problem might
be difficult and interesting. Kündgen and Thomassen [1] proved that every
loopless Eulerian triangulation G of the torus has a spanning nonbipartite
quadrangulation, and that if G has sufficiently large face width, then G also
has a bipartite one. We prove that a loopless Eulerian triangulation G of
the torus has a spanning bipartite quadrangulation if and only if G does not
have K7 as a subgraph.

This talk is based on the papers [2, 3, 4].
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