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Space forms, i.e., Riemannian manifolds of constant sectional curvature,
play a prominent role in geometry and an important problem consists of find-
ing properties that characterize them. In this talk, we report results from
[1], where we show that the validity of some theorems concerning curves
and surfaces can be used for this purpose. For example, it is known that
the so-called rotation minimizing (RM) frames allow for a characterization
of geodesic spherical curves in Euclidean, hyperbolic, and spherical spaces
through a linear equation involving the coefficients that dictate the RM frame
motion [2]. Here, we shall prove the converse, i.e., if all geodesic spherical
curves on a manifold are characterized by a certain linear equation, then all
the geodesic spheres with a sufficiently small radius are totally umbilical, and
consequently, the ambient manifold is a space form. (We also present an al-
ternative proof, in terms of RM frames, for space forms as the only manifolds
where all geodesic spheres are totally umbilical [3].) In addition, we furnish
two other characterizations in terms of (i) an inequality involving the mean
curvature of a geodesic sphere and the curvature function of their curves and
(ii) the vanishing of the total torsion of closed spherical curves in the case
of 3d manifolds. (These are the converse of previous results [4].) Finally, we
introduce ruled surfaces and show that if all extrinsically flat surfaces in a
3d manifold are ruled, then the manifold is a space form.
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