Optimal control problem for a repulsive chemotaxis system

María Ángeles Rodríguez-Bellido

Universidad de Sevilla, Spain

angeles@us.es

Francisco Guillén-González

Universidad de Sevilla, Spain
guillen@us.es

Exequiel Mallea-Zepeda

Universidad de Tarapacá, Arica, Chile
emallea@uta.cl

The chemotaxis phenomenon can be understood as the directed movement of living organisms in response to chemical gradients. Keller and Segel [5] proposed a mathematical model that describes the chemotactic aggregation of cellular slime molds. These molds move preferentially towards relatively high concentrations of a chemical substance secreted by the amoebae themselves. Such mechanism is called *chemo-attraction* with production. However, when the regions of high chemical concentration generate a repulsive effect on the organisms, the phenomenon is called *chemo-repulsion*.

In this work, we want to study an optimal control problem for the (repulsive) Keller-Segel model and a bilinear control acting on the chemical equation in a 2D and 3D domains. The system can be written as:

$$\begin{cases}
\partial_{t}u - \Delta u - \nabla \cdot (u \nabla v) &= 0 & \text{in } \Omega \times (0, T), \\
\partial_{t}v - \Delta v + v &= u + f v \mathbf{1}_{\Omega_{c}} & \text{in } \Omega \times (0, T), \\
\partial_{\mathbf{n}}u &= \partial_{\mathbf{n}}v &= 0 & \text{on } \partial\Omega \times (0, T), \\
u(0, \cdot) &= u_{0} \geq 0, \quad v(0, \cdot) &= v_{0} \geq 0 & \text{in } \Omega,
\end{cases} \tag{1}$$

being $f: Q_c := (0,T) \times \Omega_c \to \mathbb{R}$ (the control) with $\Omega_c \subset \Omega \subset \mathbb{R}^n$ (n=2,3) the control domain, and the state $u,v:Q:=(0,T) \times \Omega_c \to \mathbb{R}_+$ the celular density and chemical concentration, respectively. Here, \mathbf{n} is the outward unit normal vector to $\partial\Omega$.

The existence and uniqueness of global in time weak solution (u, v) for the uncontrolled system is known (see for instance [1, 4]).

In this work we study an optimal control problem subject to a chemorepulsion system with linear production term, and in which a bilinear control

ANALYSIS, CONTROL AND INVERSE PROBLEMS FOR PARTIAL REFERENCESDIFFERENTIAL EQUATIONS (MS - ID 22)

acts injecting or extracting chemical substance on a subdomain of control $\Omega_c \subset \Omega$. Existence of weak solutions are stablished (in the 3D case by using a regularity criterion), and, as a consequence, a global optimal solution together with first-order optimality conditions for local optimal solutions are deduced.

The results presented in this talk are based on [2, 3].

References

- Cieslak, T., Laurençot, P., Morales-Rodrigo, C.: Global existence and convergence to steady states in a chemorepulsion system. Parabolic and Navier-Stokes equations. Part 1, 105-117, Banach Center Publ., 81, Part 1, Polish Acad. Sci. Inst. Math., Warsaw, 2008.
- [2] Guillén-González, F.; Mallea-Zepeda, E.; Rodríguez-Bellido, M.A. Optimal bilinear control problem related to a chemo-repulsion system in 2D domains. ESAIM Control Optim. Calc. Var. 26 (2020), Paper No. 29, 21 pp.
- [3] Guillén-González, F.; Mallea-Zepeda, E.; Rodríguez-Bellido, M.A. A regularity criterion for a 3D chemo-repulsion system and its application to a bilinear optimal control problem. SIAM J. Control Optim. 58 (2020), no. 3, 1457–1490.
- [4] Guillén-González, F.; Rodríguez-Bellido, M. A.; Rueda-Gómez, D. A. Unconditionally energy stable fully discrete schemes for a chemorepulsion model. Math. Comp. 88 (2019), no. 319, 2069–2099.
- [5] Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theo. Biol. Vol. 26, 399-415 (1970).