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In the cylindrical domain Q = (0, T )× Ω, 0 < T <∞, where Ω ⊂ Rn is
a bounded domain such that ∂Ω ∈ C2, the following problem is considered:

(|u|q−1u)t −∆pu = 0, p > q > 0,

u(0, x) = u0 in Ω, u0 ∈ Lq+1(Ω),

u(t, x)
∣∣∣
∂Ω

= f(t, x),

(1)

where f generates boundary regime with singular peaking, namely,

f(t, x)→∞ as t→ T, ∀x ∈ K ⊂ ∂Ω, K 6= ∅. (2)

Function f is called a localized boundary regime (S-regime) if

Ω \ Ω0 6= ∅, where Ω0 :=

{
x ∈ Ω : sup

t→T
u(t, x) =∞

}
for an arbitrary weak solution u of problem (1). Sharp conditions of local-
ization of boundary regime were obtained by some version of local energy
estimates (see [1] and references therein). Papers [2, 3] are devoted to in-
vestigation of the behavior of weak solutions in the case when the blow-up
set Ω0 ⊂ ∂Ω (LS-regime). The precise estimates of the limiting profile of
solutions were obtained, namely,

sup
t→T

u(t, x) 6 ψ(x), x ∈ Ω,

where function ψ is determined by characteristics of peaking of the boundary
regime f .

As an application of these results we study the following parabolic quasi-
linear equation with a nonlinear absorption term:

(|u|q−1u)t −∆pu = −b(t, x)|u|λ−1u, (t, x) ∈ Q, λ > p > q > 0, (3)

Here b(t, x) > 0 is a degenerate absorption potential: b(t, x) → 0 as t → T
∀x ∈ Ω. Precise upper estimates for all weak solutions of equation (3) near
to t = T (limiting profile of solution), depending on the behavior of function
b, were obtained in the papers [2, 4]. It is important to underline that the
obtained estimates don’t depend on initial and boundary values and hold for
large solutions of the equation (3) (if they exist).
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